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Energy nonequipartition in systems of inelastic, rough spheres
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We calculate and verify with simulations the ratio between the average translational and rotational energies
of systems with rough, inelastic particles, either forced or freely cooling. The ratio shows a nonequipartition of
energy. In stationary flows, this ratio depends mainly on the particle roughness, but in nonstationary flows,
such as freely cooling granular media, it also depends strongly on the normal dissipation. The approach
presented here unifies and simplifies different results obtained by more elaborate kinetic theories. We observe
that the boundary induced energy flux plays an important role.@S1063-651X~98!11108-X#

PACS number~s!: 46.10.1z, 51.10.1y, 05.60.1w, 05.40.1j
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Granular materials are collections of macroscopic p
ticles with rough surfaces and dissipative interactions.
though rotation and friction are often neglected, they play
active role for the dynamics of systems with rough or no
spherical constituents. In contrast to classical elastic syste
energy is not equipartitioned between the degrees of free
in the system@1–5#. In order to examine this ratio, kineti
theories@1–4# and numerical simulations@5# were applied
for special boundary conditions, and a variety of results w
obtained. We unify these results in a single theory which a
explains when each one is valid.

We consider a system ofN particles. We defineĒ to be
the average translational kinetic energy per degree of f
dom, andEo to be the rotational kinetic energy per degree
freedom, so that

Ē[
1

Nn̄
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i 51
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i 51

N
mq

2
a2v i

2 . ~1!

Here,m is the mass anda the radius of a particle.v i is the
velocity of particlei , andv i is its angular velocity.D is the
number of dimensions~we restrict ourselves toD52 and 3
here!, q is the dimensionless moment of inertia;q5 1

2 for
disks, andq5 2

5 for spheres. The number of translation
degrees of freedom per particle isn̄5D, and the number of
rotational degrees of freedoms isno52D23. Ē andEo are
often referred to as ‘‘granular temperatures.’’ This termin
ogy is not intended to suggest that a thermodynamic equ
rium exists in granular flows, but simply to draw an analo
with the temperature of an ideal gas, which is also the av
age energy per degree of freedom.Ē and Eo in Eq. ~1! are
well defined whether or not the system is in equilibrium.
this paper, we consider all particles to be identical, howev
the above definitions can easily be extended to differ
types of particles.

We quantify the distribution of energy between the tra
lational and rotational modes with the quantityR[Eo/(Eo

1Ē). When there is no energy in the rotational mode,R
50. When energy is equally distributed between all t
modes,R5 1

2 . If rotational energy dominates, thenR→1. We
will study how R depends on the particle properties and
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boundary conditions. This question has been addresse
several authors@1–4#, but serious and unexplained conflic
exist between their results. For example, Ref.@4# claimed
thatR depends on the normal restitution, whereas@1–3# said
that R is independent of this parameter.

We use the standard constant roughness model for
instantaneous collisions of rotating particles with radiusa,
massm, and moment of inertiaI 5qma2. This model ac-
counts for dissipation, using the restitution coefficientr and
the tangential restitutionb. Since this has been extensive
used and discussed@1–4#, we include only the results here
The post-collisional velocitiesv8 andv8 are given in terms
of the precollisional velocitiesv andv by

v1,285v1,27
11r

2
vn7

q~11b!

2q12
~vt1vr !,

~2!

av1,285av1,21
11b

2q12
@ n̂3~vt1vr !#.

Here vn[@(v12v2)•n̂#•n̂ is the component ofv12v2 par-
allel to n̂, a unit vector pointing along the line connecting th
centers of the colliding particles. The tangential compon
of v12v2 is vt[v12v22vn , and vr[2a(v11v2)3n̂ is
the tangential velocity due to particle rotation.

Later on, we will need expressions for the change in
tational and translational kinetic energy during a collisio
The change in translational energy is

Nn̄DĒ[2Qvn
21S@2Ct1v t

22Ct2~vt•vr !1Ct3v r
2#, ~3!

with the positive prefactorsQ[m(12r 2)/4, S[mq(1
1b)/@4(11q)2#, and the constantsCt1[21q(12b), Ct2
[222qb andCt3[q(11b). Likewise, the change in rota
tional energy is

NnoDEo[1S@Cr1v t
22Cr2~vt•vr !2Cr3v r

2#, ~4!

where the constants areCr1[(11b), Cr2[2(q2b), and
Cr3[2q112b. Note that the~constants! C are positive
~except thatCr2 can be negative! so that the signs in Eqs.~3!
and~4! indicate the direction of energy transfer between
degrees of freedom.
2247 © 1998 The American Physical Society
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The quantityR ~or its equivalent! has been calculated b
several authors. One result found by three different auth
@1–3# for granular material undergoing uniform shear is

R5
q~11b!

q~11b!1~112q2b!
, ~5!

i.e., a function independent ofr .
On the other hand, Goldshtein and Shapiro@4# found a

much different expression~for D53), involving r :

R5
1

2S 12
aG

bG1AaG
2 1bG

2 D , ~6!

with the quantitiesaG[(12b2)(12q)/(11q)211r 2 and
bG[2q(11b)2/(11q)2. Equation~6! differs greatly from
Eq. ~5! when r ,1. In the following, we show that the dif
ferences between Eqs.~5! and ~6! arise from the boundary
conditions, i.e., from the existence of external forcing.

Consider a granular material with external forcing, whe
the particles interact only through collisions obeying Eq.~2!.
The change inEo from time t0 to t1 is

Eo~ t1!2Eo~ t0!5(
coll.

DEo~Ci !1
1

NnoE
t0

t1
Po~ t !dt, ~7!

wherePo is the rotational energy added by the forcing. T
sum is taken over all the collisions which take place betw
t0 and t1, andDEo(Ci) is the change inEo for collision i .
Now, consider a situation where the granular medium
maintained in a stationary state@Eo(t1)5Eo(t0)# by some
kind of forcing, and that this forcing adds only translation
kinetic energy @Po50#. Equation ~7! becomes
(coll.DEo(Ci)50, which states that collisions do not, on a
erage, change the rotational energy. When the assump
made above are satisfied, the dissipation of rotational en
is exactly balanced by the conversion ofĒ into Eo. Using
Eq. ~4!, we obtain: 2Cr1^v t

2&1Cr2^vt•vr&1Cr3^v r
2&50.

Here the angle brackets^•••& indicate an average taken ov
the collisions. We now consider how to calculate these av
ages.

If c is the quantity to be averaged, then

^c&5$cPcoll~v1 ,v2 ,v1 ,v2 ,b!%b,1,2, ~8!

wherePcoll gives the probability of a collision occurring be
tween particles 1 and 2 with a normalized impact param
0<b<1. The normalized impact parameter is the distan
between particle centers at closest approach if the part
did not interact, normalized by the particle diameter. T
subscripts on the curly brackets means we average ove
values ofb, and over all pairs of particles. We now mak
several simplifying assumptions aboutPcoll . First, we as-
sume that the angular velocities have no effect on the p
ability of collision: Pcoll5Pcoll(v1 ,v2 ,b). Next, we assume
thatPcoll;v f (b), (v[uv12v2u) because particles with larg
relative velocities are more likely to collide. Finally, the d
pendence ofPcoll on b can be deduced from geometric
arguments:Pcoll;v for D52 andPcoll;vb for D53. Thus
we have
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^c&5$cv~2b!D22%b,1,2Y$v%b,1,2, ~9!

with the factor of 2 and the denominator required for no
malization.

Since the rotational and translational velocities are unc
related,

^v r
2&5$v r

2%1,252a2$~v13n̂!2%15
4~D21!

qm
Eo, ~10!

where$ %1 indicates an average over all particles. The fac
of D21 arises because, inD53, one of the three rotationa
degrees of freedom is excluded by the cross product withn̂.
In D52, there is only one rotational degree of freedom, a
it always participates in every collision.

To calculate^vn
2& and ^v t

2&, we usev t
25v2b2 and vn

2

5v22v t
2 . The average can be factored into two parts:

^v t
2&5

$v3b2~2b!D22%b,1,2

$v%1,2

5$b2~2b!D22%b

$v3%1,2

$v%1,2
. ~11!

Evaluating the first factor gives$b2(2b)D22%b5D/6, where
$ %b indicates an average over all possible values ofb. The
second factor will be proportional toĒ/m, but calculating the
coefficient requires a knowledge of the distribution of velo
ties. Assuming a Maxwellian velocity distribution give

$v3%1,2/$v%1,2524(D21)Ē/(Dm). Then we have ^v t
2&

54(D21)Ē/m and ^vn
2&58Ē/m.

All of the assumptions we have made up to now a
equivalent to those made in the kinetic theories@1–4#. Thus
it is not surprising that we recover some of their results.
particular, putting the averages into Eq.~7! gives 2Cr1Ē
1Cr3Eo/q50, and, after using the definitions ofCr1 and
Cr3, we obtainR as in Eq.~5!.

Equation~5! does not depend onr becauseR is fixed by
a balance between the conversion ofĒ into Eo and the dis-
sipation ofEo. Both of these processes depend only onb and
q, but not onr . As soon as the dissipation ofĒ starts to play
a role in determiningR, thenr will appear. We examine such
a case next. Consider a granular medium in the absenc
forcing. If rÞ1 andbÞ1,21, thenEo and Ē decrease to-
ward 0, butR can approach a constant. This can be verifi
by simulations and a more elaborate calculation in the fram
work of the kinetic theory@4#, or with a Liouville operator
formalism @6,7#.

In the following, we simplify the algebra by usingK
5Ē/Eo instead ofR @R51/(11K)#. During a collision,K
changes by

DK5
Ē1DĒ

Eo1DEo
2K5

DE2KDEo

Eo1DEo
. ~12!

We look for a value ofK such thatDK50. The denominator
of this equation is always positive. Equating the numerato
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0, we find that a collision leavesR unchanged if K

5DĒ/DEo. This equation can be expanded in terms of^vn
2&,

^v t
2&, and^v r

2& using Eqs.~3! and ~4!, to

K5
A^vn

2&1Ct1^v t
2&2Ct3^v r

2&

2aCr1^v t
2&1aCr3^v r

2&
, ~13!

wherea[n̄/no, andA[Q/S @see Eq.~3!#. Because the en
ergy decreases with every collision, the averages mus
interpreted as taken over all possible collisions at a gi
time.

Using our previous expressions for the averages and r
ganizing Eq.~13! as a quadratic equation forK yields

a
bG

2
K22@aaG1~a21!cG#K2

bG

2
50, ~14!

with the quantitiesaG and bG from Eq. ~6!, and cG[(1
1b)(2q1q22bq2)/(11q)2. In deriving Eq.~14!, we used
a52/(D21). ForD53, we havea51, and the solution of
Eq. ~14! leads to Eq.~6!.

Next we compare the theoretical results, derived abo
with simulations inD52. We examine three different simu
lational ‘‘experiments.’’ In the first case, energy is put in

FIG. 1. Simulation results from a vertically vibrated system.~a!
R is compared with the theoretical prediction in Eq.~5! for three
values ofr . ~b! The data forr 50.9 from~a! are compared to simu
lations with different boundary conditions~see text for details!.
be
n

r-

e,

one translational mode by a vibrating wall, and, in the s
ond case, a granular material under sheared periodic bo
ary conditions is examined. Finally, a granular media is st
ied in the absence of any forcing whatsoever. On the bas
the theory presented above, we expect the first two case
obey Eq.~5!, and the last case to obey Eq.~6!. In all cases,
we perform the experiments with differentr , and for each
value of r , we varyb from 20.95 to 1.

In the first experiment,N5160 particles of radiusa are
placed on a vertically vibrating floor in the presence of gra
ity. The boundaries in the horizontal direction are period
the domain is 50 particle radii wide and infinitely high. Th
period of the floor vibrationT and the gravitational accelera
tion are here related bygT2/a51. The height of the floor
varies periodically in time, following an asymmetric saw
tooth wave form.~The choice of wave form is arbitrary
changing the wave form does not significantly changeR.!
The floor moves up a distance of 5a, with an upwards ve-
locity 5a/T, and then returns instantly to its lowest positio
In all cases, the simulations ran for 7000T, with R being
measured everyDt50.25T for 5000T<t<7000T, and these
values were averaged to give the points in Fig. 1~a!. Since
this experiment satisfies the assumption that energy is in
into the translational modes only, we expect that the res
will satisfy Eq. ~5!. Figure 1~a! confirms that this is indeed

FIG. 2. ~a! Results of the shearing experiment. The points sh
the results for differentr , compared to the analytical result.~b!
Results of the cooling experiment. The points show the results
simulations and the curves giveR51/(11K) with K from Eq.~14!,
with the appropriate value ofr , andD52.



c
id
f

y
s
r

f
a
lli-

e-

i
n

t

ri
tu
os
in
p-

t

te
te

ro
oo

e

av-

a
e

-
m
e

-
la-
. In
the

vi-
ure
in
the
e

For
een

ons
ns.
n-

mb

n
e-

2250 PRE 58SEAN McNAMARA AND STEFAN LUDING
the case, with some systematic underestimation ofR by the
theory when the dissipation is strong.

Since it is difficult to do experiments with periodi
boundaries, we also examined the effect of stationary s
walls at the edges of the domain. We compare the results
r 50.9 from Fig. 1~a! with three different types of boundar
conditions.~i! a perfectly rough wall with wall propertie
r 5b51, ~ii ! a wall wherer andb have the same values fo
particle-particle and particle-wall collisions, and~iii ! a per-
fectly elastic and smooth wall withr 51 andb521. The
results presented in Fig. 1~b! show that only the first type o
wall causesR to deviate significantly. We relate this to
competition between particle-particle and particle-wall co
sions: The collisions with the wall in case~i! pushR toward
R(b51)5 1

2 ; i.e., equipartition holds, and the collision b
tween particles pushR toward a smaller value.~At b>21,
R. 1

2 because the kinetic energy of the vertical velocities
greater than that of the horizontal, and the wall couples o
to the vertical motions.! In case~ii !, both types of collisions
pushR toward the same value, and in case~iii ! the particle-
wall collisions do not influenceR, so that the results are no
perturbed at all.

In the second experiment, we drive the granular mate
by shearing it, a case frequently considered in the litera
@1–3#. N5160 particles are placed in a square domain wh
sides areL550a in length. The boundaries are periodic
the x and y directions. A uniform shear is imposed by a
plying Lees-Edwards boundary conditions@8#: when a par-
ticle exits the domain at the bottom~top!, its image enters a
the top~bottom! of the domain, with itsx velocity increased
by a constant velocityU (2U), at its position shifted by a
distanceUt (2Ut). These boundary conditions elimina
the need to specify wall properties, and make the sys
translationally invariant. In our simulations,U52a/T, giv-
ing a shear rate ofG5U/L50.04/T. The time unitT is ar-
bitrary.

A direct application of Eq.~5! will fail, because the
boundary conditions generate both an average flow and
average rotation. However, if we interpretEo andĒ to be the
energy which remains after removing the mean flow and
tation, the agreement between theory and simulation is g
e-
or

s
ly

al
re
e

m

an

-
d,

as shown in Fig. 2~a!. The translational kinetic energy of th
mean flow was calculated as Ēmean5(m/2)
3G2(1/N)( i 51

N (yi2L/2)2. The rotational energy of the
mean flow was estimated byEmean

o 5mqa2V2/2, whereV is
the observed average angular velocity. Even with longer
eraging times (5000T in our simulations!, the data are con-
siderably noisier than in Fig. 1.

In the last experiment,N5160 particles are placed in
periodic domain withL5100a, but no shear is applied. Th
initial condition is generated by settingr 51 and b521.
The particles quickly attain a Maxwellian velocity distribu
tion. Then dissipation is ‘‘switched on,’’ and the syste
evolves without any further input of energy. Although th
energy decreases with every collision,R approaches the con
stant value shown in the graph. The results of many simu
tions were averaged together to reduce the fluctuations
Fig. 2~b!, we plot the results. The theoretical curves are
solutions of Eq.~14!, with a52, and the three values ofr
shown in the plot.

In conclusion, we extend Eq.~6! to two dimensions and
summarize the different results forR in the literature. Our
method of calculation is simple enough to show why Eq.~5!
applies to forced granular media, and Eq.~6! to cooling
granular media. Equation~5! will apply whenever the forcing
adds only translational energy. This is the case for both
bration and shear. We succeeded in formulating a proced
to calculate the ratio of tangential and rotational energy
homogeneously cooling systems. Our result replaces
valueK51/2 ~in two dimensions when equipartition is tru
for elastic systems!. We examined not only the limit of al-
most elastic particles, but also rather inelastic situations.
most boundary conditions used, the agreement betw
theory and simulations is encouraging. However, simulati
in D53 are still needed to check the analytical expressio
Possible future work includes boundary conditions with no
zero rotational energy input, and calculatingR for the more
realistic interaction model that accounts also for Coulo
friction. @5,9,10#
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