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Energy nonequipartition in systems of inelastic, rough spheres
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We calculate and verify with simulations the ratio between the average translational and rotational energies
of systems with rough, inelastic particles, either forced or freely cooling. The ratio shows a nonequipartition of
energy. In stationary flows, this ratio depends mainly on the particle roughness, but in nonstationary flows,
such as freely cooling granular media, it also depends strongly on the normal dissipation. The approach
presented here unifies and simplifies different results obtained by more elaborate kinetic theories. We observe
that the boundary induced energy flux plays an important {8&063-651X98)11108-X

PACS numbdss): 46.10+2z, 51.10+y, 05.60:+w, 05.40:+j

Granular materials are collections of macroscopic parboundary conditions. This question has been addressed by
ticles with rough surfaces and dissipative interactions. Al-several authorfl—4], but serious and unexplained conflicts
though rotation and friction are often neglected, they play arexist between their results. For example, Rdfl claimed
active role for the dynamics of systems with rough or non-thatR depends on the normal restitution, wherghs3] said
spherical constituents. In contrast to classical elastic systemthatR is independent of this parameter.
energy is not equipartitioned between the degrees of freedom We use the standard constant roughness model for the
in the systen{1-5]. In order to examine this ratio, kinetic instantaneous collisions of rotating particles with radays
theories[1—4] and numerical simulationg5] were applied massm, and moment of inertid =gma?. This model ac-
for special boundary conditions, and a variety of results wagounts for dissipation, using the restitution coefficierand
obtained. We unify these results in a single theory which alsehe tangential restitutiog. Since this has been extensively
explains when each one is valid. used and discussdd—4], we include only the results here.

We consider a system & particles. We defin€ to be  The post-collisional velocities’ andw’ are given in terms
the average translational kinetic energy per degree of freesf the precollisional velocities and w by
dom, andE® to be the rotational kinetic energy per degree of
freedom, so that 1+r _q(1+p)
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Here,m is the mass and the radius of a particleu; is the  Herewv,=[(v1— v,)-n]-n is the component of, —v, par-

velocity of particlei, andw; is its angular velocityD is the  gjie| ton, a unit vector pointing along the line connecting the
number of dimensiongwe restrict ourselves t®=2 %”d 3 centers of the colliding particles. The tangential component
h_ere, g is the2d|menS|onIess moment of inertigs= 3 fqr of vy~ v, is b;=v,—v,~v,, and v,=—a(w+ wy) XN is
disks, andg=3 for spheres. ka number of translational the tangential velocity due to particle rotation.
degrees of freedom per particlens=D, and the number of Later on, we will need expressions for the change in ro-
rotational degrees of freedomsn8=2D—3. E andE°® are  tational and translational kinetic energy during a collision.
often referred to as “granular temperatures.” This terminol-The change in translational energy is
ogy is not intended to suggest that a thermodynamic equilib-
rium exists in granular flows, but simply to draw an analogy NNAE=— Qu2+ 95— Cyyv2— Cip(vy-v,) + Cigv?], (3)
with the temperature of an ideal gas, which is also the aver-
age energy per degree of freedomand E° in Eqg. (1) are 4+ B)I[4(1+q)?], and the constantS,, =2+ q(1— 8), C
well defined whether or not the system is in equilibrium. In_2 208 andC 14 Like té the chanae in rgta-
this paper, we consider all particles to be identical, however aB w=d(1+p). Likewis gel
the above definitions can easily be extended to dn‘feren’iIonal energy is
types of particles. OAEO— 2_ N 2

We quantify the distribution of energy between the trans- NIPAE=+SCravi = Cralvro) = Craur],  (4)
lational and rotational modes with the quantR=E®/(E°  where the constants a@,;=(1+8), C,,=2(q— ), and
+E) When there is no energy in the rotational mo&e, C,;=2g+1— 8. Note that the(constants C are positive
=0. When energy is equally distributed between all the(except thatC,, can be negativyeso that the signs in Eq$3)
modesR= 3. If rotational energy dominates, thés-1. We  and(4) indicate the direction of energy transfer between the
will study how R depends on the particle properties and thedegrees of freedom.

with the positive prefactorsQ=m(1—r?)/4, S=mq(1
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The quantityR (or its equivalent has been calculated by Do
several authors. One result found by three different authors (B)y={yv(2b)" “}p12 [{vtp12: ©)
[1-3] for granular material undergoing uniform shear is

with the factor of 2 and the denominator required for nor-

R— q(1+p) (5  malization.
q(1+p8)+(1+29-8)' Since the rotational and translational velocities are uncor-
related,

i.e., a function independent of
On the other hand, Goldshtein and Shag4d found a 5 ) ) ~ o, AMD-1)
much different expressiotfor D=3), involvingr: (vi)={vrh2=2a(w;xn) }1:—qm E° (10

.
"2

ag where{ }, indicates an average over all particles. The factor
1= be+ \/m ’ ©®  of D—1 arises because, ib=3, one of the three rotatignal
degrees of freedom is excluded by the cross product mith

with the quantitiesag=(1—82)(1—q)/(1+q)—1+r?and In D=2, there is only one rotational degree of freedom, and
be=2q(1+ B)%/(1+q)2. Equation(6) differs greatly from it always participates in every collision.
Eq. (5) whenr<1. In the following, we show that the dif-  To calculate(v?) and (vZ), we usevi=v2b? and v2
ferences between Eq&) and (6) arise from the boundary =U2—vt2. The average can be factored into two parts:
conditions, i.e., from the existence of external forcing.

Consider a granular material with external forcing, where . {v3bA(2b)P 2y 1,
the particles interact only through collisions obeying E3). ()= (v},
The change irE° from timety to t; is ’

3
:{bz(Zb)Dz}b{{vT}:;- 11

Evaluating the first factor givefh?(2b)?~2},=DI6, where
whereP® is the rotational energy added by the forcing. The{ }p, indicates an average over all possible value®.oThe
sum is taken over all the collisions which take place betweemecond factor will be proportional #/m, but calculating the
to andty, and AE®(C;) is the change irE® for collisioni.  coefficient requires a knowledge of the distribution of veloci-
Now, consider a situation where the granular medium igies. Assuming a Maxwellian velocity distribution gives
maintained in a stationary sta{£°(t1):E°(to)] by some {03} {0} = 24(D— 1)E/(Dm). Then we have (v?)
kind of forcing, and that this forcing adds only translational —a(D- 1)E/m and(vﬁ)=8€/m.

kinetic_~ energy [P"=0]. Equation (7) becomes All of the assumptions we have made up to now are
Zco AE®(C)) =0, which states that collisions do not, on av- o i o100t 16 those naade in the kinetic theovﬁ;a)sdf] Thus

erage, change the rotational energy. When the assumptioi %S not surprising that we recover some of their .results In
made above are satisfied, the dissipation of rotational energy ~ . P i 9 i ) _"
is exactly balanced by the conversion Bfinto E°. Using particular, putting the averages into Eq) gives —C,E

P ; 7
Eq. (4), we obtain: _Cr1<vt2>+cr2<vt'vr>+cr3<vr2>:0- +C,3E°/q=0, and, after using the definitions &,; and

. C,3, we obtainR as in Eq.(5).
Here the angle bracke{s- -) indicate an average taken over Equation(5) does not depend anbecauseR is fixed b
the collisions. We now consider how to calculate these aver- 9 P y

1 (u
E°(ty) ~ E°(to) = 24 AE%(C) + s ft Po(dt, (7)
coll. 0

ages. a balance between the conversionfofnto E® and the dis-
If ¢ is the quantity to be averaged, then sipation ofE°. Both of these processes depfnd onlysoand
g, but not onr. As soon as the dissipation Bf starts to play

(P)={YPcon(v1,02,01,0,,b)}p 12, (8)  arolein determiningdr, thenr will appear. We examine such

a case next. Consider a granular medium in the absence of
whereP gives the probability of a collision occurring be- forcing. If r#1 andg#1,—1, thenE® andE decrease to-
tween particles 1 and 2 with a normalized impact parametefyard 0, butR can approach a constant. This can be verified
O<b=1. The normalized impact parameter is the distancgy simulations and a more elaborate calculation in the frame-
between particle centers at closest approach if the particlegork of the kinetic theoryf4], or with a Liouville operator
did not interact, normalized by the particle diameter. Theformalism[6,7].
subscripts on the curly brackets means we average over all |n the following, we simplify the algebra by usinig

values Of.b’ a_nd_ over all pai_rs of particles. We now make =E/E° instead ofR [R=1/(1+K)]. During a collision,K
several simplifying assumptions aboBt,,. First, we as-

" changes b
sume that the angular velocities have no effect on the prob- 9 y
ability of collision: Pq=P¢o(v1,v2,b). Next, we assume = _ o
that P, ~v f(b), (v=|v,—v,|) because particles with large AK = E+—AE —K= w (12)
relative velocities are more likely to collide. Finally, the de- E°+AE° E°+AE°

pendence ofP., on b can be deduced from geometrical
argumentsP ., ~v for D=2 andP.y~vb for D=3. Thus = We look for a value oK such thah K=0. The denominator
we have of this equation is always positive. Equating the numerator to
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FIG. 1. Simulation results from a vertically vibrated systéay.
R is compared with the theoretical prediction in E§) for three
values ofr. (b) The data for =0.9 from(a) are compared to simu-
lations with different boundary conditiorisee text for detai)s

0, we find that a collision leavef unchanged ifK
= AE/AE®. This equation can be expanded in termguf),

05 1.0

(v?), and(v?) using Eqs(3) and (4), to

K= A<Uﬁ>+ Ct1<Ut2>_ Ct3<Ur2>

- acrl<vt2> + acr3<vr2> ’

wherea=n/n°, andA=Q/S [see Eq(3)]. Because the en-

FIG. 2. (a) Results of the shearing experiment. The points show
the results for different, compared to the analytical resulb)
Results of the cooling experiment. The points show the results of
simulations and the curves gi®e=1/(1+K) with K from Eq.(14),
with the appropriate value af, andD=2.

one translational mode by a vibrating wall, and, in the sec-
ond case, a granular material under sheared periodic bound-
ary conditions is examined. Finally, a granular media is stud-
ied in the absence of any forcing whatsoever. On the basis of
the theory presented above, we expect the first two cases to
obey Eq.(5), and the last case to obey H@). In all cases,
we perform the experiments with different and for each
value ofr, we varyB from —0.95 to 1.

In the first experimentN=160 particles of radiua are

ergy decreases with every collision, the averages must bglaced on a vertically vibrating floor in the presence of grav-
interpreted as taken over all possible collisions at a giverity. The boundaries in the horizontal direction are periodic,

time.

the domain is 50 particle radii wide and infinitely high. The

Using our previous expressions for the averages and reoperiod of the floor vibratiom and the gravitational accelera-

ganizing Eq.(13) as a quadratic equation &t yields

2

with the quantitiesag and bg from Eq. (6), and cg=(1
+B)(29+ 92— Bg?)/(1+qg)?. In deriving Eq.(14), we used
a=2/(D—1). ForD=3, we havea=1, and the solution of

Eq. (14) leads to Eq(6).

b
a—K2—[aag+(a—1)cg]K—

bg
2

_:0'

tion are here related bgT?/a=1. The height of the floor
varies periodically in time, following an asymmetric saw-
tooth wave form.(The choice of wave form is arbitrary;
changing the wave form does not significantly chamye
The floor moves up a distance oabwith an upwards ve-
locity 5a/T, and then returns instantly to its lowest position.
In all cases, the simulations ran for 70Q0with R being
measured evergit=0.25T for 5000T<t=<7000T, and these
values were averaged to give the points in Figa).1Since

Next we compare the theoretical results, derived abovethis experiment satisfies the assumption that energy is input
with simulations inD=2. We examine three different simu- into the translational modes only, we expect that the results
lational “experiments.” In the first case, energy is put into will satisfy Eq. (5). Figure 1a) confirms that this is indeed
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the case, with some systematic underestimatioR @fy the  as shown in Fig. @). The translational kinetic energy of the

theory when the dissipation is strong. mean flow was calculated as Eea= (M/2)
Since it is difficult to do experiments with periodic ><r2(1/N)2i’\‘:1(yi_ L/2)%. The rotational energy of the
boundaries, we also examined the effect of stationary sidenean flow was estimated Bf,.,=mqaQ?/2, whereQ is
walls at the edges of the domain. We compare the results fahe observed average angular velocity. Even with longer av-
r=0.9 from Fig. 1a) with three different types of boundary eraging times (500D in our simulationy, the data are con-
conditions. (i) a perfectly rough wall with wall properties siderably noisier than in Fig. 1.
r=pB=1, (ii) a wall wherer and B have the same values for  In the last experimentN=160 particles are placed in a
particle-particle and particle-wall collisions, affiid) a per-  periodic domain with. =100, but no shear is applied. The
fectly elastic and smooth wall with=1 and8=—1. The initial condition is generated by settimg=1 and 8= —1.
results presented in Fig(d) show that only the first type of The particles quickly attain a Maxwellian velocity distribu-
wall causesR to deviate significantly. We relate this to a tion. Then dissipation is “switched on,” and the system
competition between particle-particle and particle-wall colli- €volves without any further input of energy. Although the
sions: The collisions with the wall in ca$B pushR toward  €nergy decreases with every collisiéhapproaches the con-
R(B=1)=%; i.e., equipartition holds, and the collision be- Stant value shown in the graph. The results of many ;imula—
tween particles pusR toward a smaller valugAt g=—1, fions were averaged together to reduce.the fluctuations. In
R>1 because the kinetic energy of the vertical velocities isFi9- 2b), we plot the results. The theoretical curves are the
greater than that of the horizontal, and the wall couples onlgolutions of Eq.(14), with =2, and the three values of
to the vertical motions.In case(ii), both types of collisions shown in the plot.

pushR toward the same value, and in cd§g) the particle- In conclusion, we extend Ed6) to two dimensions and
wall collisions do not influenc®, so that the results are not Summarize the different results fét in the literature. Our
perturbed at all. method of calculation is simple enough to show why &).

In the second experiment, we drive the granular materia®Pplies to forced granular media, and H@) to cooling
by shearing it, a case frequently considered in the literaturgranular media. Equatiofs) will apply whenever the forcing
[1-3]. N= 160 particles are placed in a square domain whos@dds only translational energy. This is the case for both vi-
sides areL=50a in length. The boundaries are periodic in bration and shear. We succeeded in formulating a procedure
the x andy directions. A uniform shear is imposed by ap- © calculate the ratlo_of tangential and rotational energy in
plying Lees-Edwards boundary conditiof@: when a par- homogeneously cooling systems. Our result replaces the
ticle exits the domain at the bottoftop), its image enters at valueK=1/2 (in two dimensions when equipartition is true

the top(bottom of the domain, with itx velocity increased  for elastic systems We examined not only the limit of al-
by a constant velocity) (—U), at its position shifted by a most elastic particles, but also rather inelastic situations. For

distanceUt (—Ut). These boundary conditions eliminate MOSt boundary conditions used, the agreement between
the need to specify wall properties, and make the systerfheory and simulations is encouraging. However, simulations

translationally invariant. In our simulations}=2a/T, giv- N D=3 are still needed to check the analytical expressions.
ing a shear rate oFf =U/L=0.04/T. The time unitT is ar- Possible future work includes boundary conditions with non-
bitrary. zero rotational energy input, and calculatiRgor the more

A direct application of Eq.(5) will fail, because the realistic interaction model that accounts also for Coulomb
boundary conditions generate both an average flow and dfiction. [5,9,10

average rotation. However, if we interpiet andE to be the We acknowledge the support of the “Alexander von
energy which remains after removing the mean flow and roHumboldt-Stiftung” and of the “Deutsche Forschungsge-
tation, the agreement between theory and simulation is goodneinschaft, Sonderforschungsbereich 382.”

[1]J. T. Jenkins and M. W. Richman, Phys. Flui@8, 3485 [7] S. Luding, M. Huthmann, S. McNamara, and A. Zippelins,

(1985. Phys. Rev. Eto be published
[2] C. K. K. Lun and S. B. Savage, J. Appl. Med¥, 47 (1987). [8] M. P. Allen and D. J. TildesleyGomputer Simulations of Lig-
[3] C. K. K. Lun, J. Fluid Mech233 539(1991)). uids (Oxford University Press, New York, 1987p. 246.
[4] A. Goldshtein and M. Shapiro, J. Fluid Mec282, 75 (1995. [9] S. F. Foerster, M. Y. Louge, H. Chang, and K. Allia, Phys.
[5] S. Luding, Phys. Rev. B2, 4442 (1995. Fluids 6, 1108(1994.

[6] M. Huthmann and A. Zippelius, Phys. Rev5E, 6275(1997). [10] O. R. Walton and R. Braun, J. Rhe@0, 949 (1986.



